Design DFA which checks whether a given binary number is divisible by 3
SOLUTION:
∑={0,1}
Decimal No.
|
Binary No.
|
Remainder
|
States representing Remainders
|
0
|
0000
|
0
|
q0
|
1
|
0001
|
1
|
q1
|
2
|
0010
|
2
|
q2
|
3
|
0011
|
0
|
q0
|
4
|
0100
|
1
|
q1
|
5
|
0101
|
2
|
q2
|
6
|
0110
|
0
|
q0
|
7
|
0111
|
1
|
q1
|
8
|
1000
|
2
|
q2
|
Ø So DFA can be Q={ q0 , q1 , q2},∑={0,1}, q0={ q0},F={
q0} and δ is given by the table
1)Transition
diagram:
2)Transition Table:
Present State
|
Next State
|
|
Input 0
|
Input 1
|
|
à *q0
|
q0
|
q1
|
q1
|
q2
|
q0
|
q2
|
q1
|
q2
|
Since
the number should be divisible by 3,
so final state will be q0
3)Transition function:
δ( q0, 0)= q0 ,δ (q0,1)=
q1
δ( q1, 0)= q2 ,δ (q1,1)= q0
δ( q2, 0)= q1 ,δ (q2,1)= q2
Nice explanation 😍
ReplyDeleteplease me source code
ReplyDeletemuneebmujahid58@gmail.com
Delete