Construct minimal DFA over ∑={a,b} which accepts L={a power n and b power n | n, m>=1}
SOLUTION:
∑={a,b}
L = {ab, aab, abb, aabb, aaabb, …….. }
Ø So DFA can be Q={ q0 , q1 , q2},∑={a,b}, q0={ q0},F={q2} and δ is given by the table
1)Transition
diagram:
2)Transition Table:
Present State
|
Next State
|
|
Input a
|
Input b
|
|
à q0
|
q1
|
D
|
q1
|
q1
|
q2
|
*q2
|
D
|
q2
|
D
|
D
|
D
|
3)Transition function:
δ( q0, a)= q1 ,δ
(q0,b)= D
δ( q1, a)= q1 ,δ (q1,b)= q2
δ( q2, a)= D ,δ (q2,b)= q2
δ( D, a)= D ,δ (D, b)= D
Here a to the power n and b to the power n is given it means the number of a and b should be same here.
ReplyDeleteBut for this dfa it is not maintained