Design DFA for the following languages L={ w |w is any string that does not contain exactly two a’s} over ∑={a,b}


SOLUTION:

∑={a,b}

Ø  So DFA can be Q={ q0 , q1 , q2 },∑={a,b }, q0={ q0},F={ q0 , q1 } and δ is given by the table
1)Transition diagram:



2)Transition Table:

Present State
Next State
Input a
Input b
à *q0
q1
q0
    *q1    
q2
q1
   q2
q2
q2

  3)Transition function:
δ( q0, a)= q1     ,δ (q0,b)= q0   
            δ( q1, a)= q2     ,δ (q1,b)= q1   
δ( q2, a)= q2     ,δ (q2,b)= q2   

Comments

  1. Great explanation of how to design a DFA for languages that don't allow exactly two 'a's! The step-by-step breakdown of states and transitions makes it super easy to understand the concept. Just like hekateswitch unlocks new levels in gaming, understanding these automata opens up a whole new realm of language processing!

    ReplyDelete

Post a Comment

Search related post on google