Basic Concepts of Automata




a)     Symbol:

  •          It is a basic entity or basic building block of automata. 
  •      It could be letters, digits or any symbols.
  •      E.g. a,b,……,z, A,B,…..,Z,0,1,…..,9,@,$,# etc

b)  Alphabet:

  •          It is any finite set of symbols.It is denoted by ∑.
  •      There are two types of alphabets
  •          Numerical Alphabet: It contains digits as symbols. E.g. ∑={0,1}
  •          Character Alphabet: It contains characters or letters as symbols. E.g. ∑={a,b}
c)   String:

  •          It is a finite sequence of symbols taken from alphabet ∑
  •          It is denoted by  w or s
  •          Example1: w=abba is valid string over ∑={a,b}
  •          Example2: w=010101 is valid string over ∑={0,1}
d)  Length of string:

  •          It is the total numbers of symbols present in the string
  •          It is denoted by |w| or |s|
  •          Example1:If w= abba then |w|=4
  •          Example1:If w= 010101 then |w|=6
e)  Empty String:

  •          It is the string with zero occurrences of symbols i.e. |w|=0
  •          It is also called as null string denoted by Ɛ or  λ
f)    Power of ∑: (For Example over ∑={0,1})

  •          0=Set of all strings of length 0    i.e. ∑={ Ɛ}
  •          1= Set of all strings of length 1   i.e. ∑={0,1}
  •          2= Set of all strings of length 2  i.e. ∑={00,01,10,11}
  •          3= Set of all strings of length 3  i.e. ∑={000,001,010,011,100,101,110,111}
  •          n= Set of all strings of length n  

g)   Kleene closure:

  •          It is the infinite set of all possible strings of all possible lengths including Ɛ
  •          It is denoted by ∑*
  •          So ∑*=∑0 U ∑1 U ∑2 U ∑3U…..
  •       For example over ∑= {0,1}
        ∑* ={ Ɛ,0,1,00,01,10,11, 000,001,010,011,100,101,110,111,……}

h)  Positive Closure:

  •          It is the infinite set of all possible strings of all possible lengths excluding Ɛ
  •          It is denoted by ∑+
  •          So ∑+=∑* - { Ɛ  }
  •          So ∑+= ∑1 U ∑2 U ∑3U…..
  •          For example over ∑= {0,1}
            ∑* ={ 0,1,00,01,10,11, 000,001,010,011,100,101,110,111,……}
i) Language:

  •          It is set of all string taken from ∑*
  •          So it is the subset of ∑*
  •          It is denoted by L
  •          There are two types of languages
                      Finite Language: It is a finite set of string.
  • E.g.1: If L1={ Set of strings of length 2 } then { 00,01,10,11 } over the alphabet ∑={0,1}
  • E.g.2: If L2={ Set of strings of length 3} then{ 000,001,010,011,100,101,110,111} over the alphabet ∑={0,1}
     Infinite Language: It is infinite set of string.
  • E.g.1: If L3={ Set of strings of length which starts with 0 } then { 0,00,01,000,001, 010, 011,0000,………} over the alphabet ∑={0,1}

Comments

Search related post on google